资源类型

期刊论文 711

年份

2024 2

2023 45

2022 50

2021 47

2020 32

2019 48

2018 33

2017 38

2016 25

2015 38

2014 40

2013 29

2012 35

2011 29

2010 32

2009 41

2008 42

2007 36

2006 12

2005 7

展开 ︾

关键词

COVID-19 3

三十烷醇 2

内禀尺度 2

冷凝水闪蒸 2

动力响应 2

动力气垫 2

岩爆 2

水稻 2

热释放速率 2

细水雾 2

1)模型 1

32 m箱梁 1

ADV 1

ANSYS 1

ANSYS/LS-DYNA 1

BNCT医院中子照射器 1

CO2 捕集 1

Casimir效应 1

Cu(Inx 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques

Mohammad HANIFEHZADEH, Bora GENCTURK

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1120-1137 doi: 10.1007/s11709-019-0540-8

摘要: Structural performance of nuclear containment structures and power plant facilities is of critical importance for public safety. The performance of concrete in a high-speed hard projectile impact is a complex problem due to a combination of multiple failure modes including brittle tensile fracture, crushing, and spalling. In this study, reinforced concrete (RC) and steel-concrete-steel sandwich (SCSS) panels are investigated under high-speed hard projectile inpact. Two modeling techniques, smoothed particle hydrodynamics (SPH) and conventional finite element (FE) analysis with element erosion are used. Penetration depth and global deformation are compared between doubly RC and SCSS panels in order to identify the advantages of the presence of steel plates over the reinforcement layers. A parametric analysis of the front and rear plate thicknesses of the SCSS configuration showed that the SCSS panel with a thick front plate has the best performance in controlling the hard projectile. While a thick rear plate is effective in the case of a large and soft projectile as the plate reduces the rear deformation. The effects of the impact angle and impact velocity are also considered. It was observed that the impact angle for the flat nose missile is critical and the front steel plate is effective in minimizing penetration depth.

关键词: concrete panels     projectile impact     finite element modeling     smoothed particle hydrodynamics     strain rate effect    

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties

Jun WU,Xuemei LIU

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 323-340 doi: 10.1007/s11709-015-0301-2

摘要: This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

关键词: high strength concrete (SHS)     engineered cementitious composite     interface     blast test     strain rate effect    

Behavior of steel fiber–reinforced high-strength concrete at medium strain rate

Chujie JIAO, Wei SUN, Shi HUAN, Guoping JIANG

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 131-136 doi: 10.1007/s11709-009-0027-0

摘要: Impact compression experiments for the steel fiber–reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s , the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2-3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces.

关键词: steel fiber–reinforced high-strength concrete (SFRHSC)     high strain rates     split Hopkinson press bar (SHPB)     strain rate hardening effects    

Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation

Veena Bangalore Rangappa, Vidya Shetty Kodialbail, Saidutta Malur Bharthaiyengar

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0863-9

摘要: Continuous pulsed plate bioreactor (PPBR) was used for phenol biodegradation. cells immobilized on granular activated carbon was used. Dynamic and steady state biofilm characteristics depend on dilution rate (DR). Lower DR favour phenol degradation and uniform, thick biofilm formation. Exo polymeric substance production in biofilm are favoured at lower dilution rates. Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h?1 to 0.99 h?1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biologic treatment of wastewaters for phenol removal.

关键词: Biofilm     Exopolymeric substances     Phenol     Dilution rate     Pulsed plate bioreactor    

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 187-197 doi: 10.1007/s11465-015-0339-9

摘要:

In this paper, for the first time, the modified strain gradient theory is used as a new size-dependent Kirchhoff micro-plate model to study the effect of interlayer van der Waals (vdW) force for the vibration analysis of multilayered graphene sheets (MLGSs). The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. After obtaining the governing equations based on modified strain gradient theory via principle of minimum potential energy, as only infinitesimal vibration is considered, the net pressure due to the vdW interaction is assumed to be linearly proportional to the deflection between two layers. To solve the governing equation subjected to the boundary conditions, the Fourier series is assumed for w=w(xy). To show the accuracy of the formulations, present results in specific cases are compared with available results in literature and a good agreement can be seen. The results indicate that the present model can predict prominent natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.

关键词: graphene     van der Waals (vdW) force     modi- fied strain gradient elasticity theory     size effect parameter    

The effect of carbon nanotubes and polypropylene fibers on bond of reinforcing bars in strain resilient

Souzana P. TASTANI,Maria S. KONSTA-GDOUTOS,Stavroula J. PANTAZOPOULOU,Victor BALOPOULOS

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 214-223 doi: 10.1007/s11709-016-0332-3

摘要: Stress transfer between reinforcing bars and concrete is engaged through rib translation relative to concrete, and comprises longitudinal bond stresses and radial pressure. The radial pressure is equilibrated by hoop tension undertaken by the concrete cover. Owing to concrete’s poor tensile properties in terms of strength and deformability, the equilibrium is instantly released upon radial cracking of the cover along the anchorage with commensurate abrupt loss of the bond strength. Any improvement of the matrix tensile properties is expected to favorably affect bond in terms of strength, resilience to pullout slip, residual resistance and controlled slippage.The aim of this paper is to investigate the local bond of steel bars developed in adverse tensile stress conditions in the concrete cover. In the tests, the matrix comprises a novel, strain resilient cementitious composite (SRCC) reinforced with polypropylene fibers (PP) with the synergistic action of carbon nano-tubes (CNT). Local bond is developed over a short anchorage length occurring in the constant moment region of a four-point bending short beam. Parameters of investigation were the material structure (comprising a basic control mix, reinforced with CNTs and/or PP fibers) and the age of testing. Accompanying tests used to characterize the cementitious material were also conducted. The test results illustrate that all the benefits gained due to the synergy between PP fibers and CNTs in the matrix, namely the maintenance of the multi-cracking effect with time, the increased strength and deformability as well as the highly increased material toughness, were imparted in the recorded bond response. The local bond response curves thus obtained were marked by a resilient appearance exhibiting sustained strength up to large levels of controlled bar-slip; the elasto-plastic bond response envelope was a result of the confining synergistic effect of CNTs and the PP fibers, and it occurred even without bar yielding.

关键词: carbon nanotubes     strain resilient cementitious composite     polypropylene fibers     tensile bending     bond    

Effect of fine solid particles on absorption rate of gaseous CO

LU Sumin, MA Youguang, SHEN Shuhua, ZHU Chunying

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 368-372 doi: 10.1007/s11705-008-0067-3

摘要: The influence of the properties of solid particles in slurry on the absorption of CO in the slurry was investigated in a stirred thermostatic reactor. The absorption experiments were carried out in three different slurries consisting of water, cyclohexane and soybean oil, respectively, and three kinds of solid particles (active carbon, active alumina and silica gel) were incorporated into each of the above mentioned slurries separately. The experimental results show that the active carbon particles could enhance the absorption rate of gaseous CO in the aqueous slurry, while in the cyclohexane slurry, active carbon particles indicated no the absorption enhancement effect. However, it was observed that the active alumina and silica gel particles could enhance the absorption rate of CO in the cyclohexane slurry. These phenomena indicate that the solid particles, which could enhance the gaseous CO absorption rate, should possess two properties simultaneously, i.e. they rejected the solvent and had higher adsorption capacity for the solute. The experimental results also show that, as for those solid particles which could enhance the gas absorption rate, the enhancement increased quickly with the increase of solid concentration in slurry at first, and then reached a constant value gradually. It was also found that the enhancement factor was related to the coverage fraction of solid particles on the gas-liquid interface, and due to the reduction of surface fraction with increasing stirred speed, the enhancement factor decreased.

关键词: constant     influence     soybean     solvent     concentration    

Reevaluation of the effect of Dianxianning on seizure rate of refractory epilepsy as additive treatment

Liyun He, Tiancai Wen, Shiyan Yan, Runjin Li, Zufa Liu, Hui Ren, Jinmin Liu, Fengshan Zhang, Jianzhong Wu, Jian Liu

《医学前沿(英文)》 2011年 第5卷 第2期   页码 229-234 doi: 10.1007/s11684-011-0139-5

摘要: We observed the effect of Dianxianning, which was used as additive treatment to treat 206 epilepsy patients, on the epilepsy seizure rate. Based on a multicenter, prospective, randomized, and controlled clinical trial design, we used the seizure rate of epilepsy as the main index. For the treatment group comprising 137 patients, we combined Dianxianning with chemical medicine, which is the basic treatment. For the control group with 69 patients, we added placebo. The results showed that 1) Effect on seizure rate: After a three-month treatment, the seizure rate of the treatment group decreased by 37.84% on average, whereas that of the control group decreased by 13.18% on average. Statistically comparing the two groups, there was a significant difference between these groups ( <0.05). 2) Effect on seizure frequency: As time passed, the frequency in each group gradually decreased. After a three-month treatment, there was a significant difference between the two groups ( <0.05). 3) Comparison between the before and after treatment of each group: There was a very significant difference between the two groups ( <0.0001). The results indicated that, as an additive treatment, Dianxianning has a good effect on controlling the epilepsy seizure rate and frequency management. It is more effective than using chemical medicine alone.

关键词: Dianxianning     epilepsy seizure     evaluation    

Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete

Alireza DANESHYAR, Hamid MOHAMMADNEZHAD, Mohsen GHAEMIAN

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 346-363 doi: 10.1007/s11709-021-0694-z

摘要: Seismic modeling of massive structures requires special caution, as wave propagation effects significantly affect the responses. This becomes more crucial when the path-dependent behavior of the material is considered. The coexistence of these conditions renders numerical earthquake analysis of concrete dams challenging. Herein, a finite element model for a comprehensive nonlinear seismic simulation of concrete gravity dams, including realistic soil–structure interactions, is introduced. A semi-infinite medium is formulated based on the domain reduction method in conjunction with standard viscous boundaries. Accurate representation of radiation damping in a half-space medium and wave propagation effects in a massed foundation are verified using an analytical solution of vertically propagating shear waves in a viscoelastic half-space domain. A rigorous nonlinear finite element model requires a precise description of the material response. Hence, a microplane-based anisotropic damage–plastic model of concrete is formulated to reproduce irreversible deformations and tensorial degeneration of concrete in a coupled and rate-dependent manner. Finally, the Koyna concrete gravity dam is analyzed based on different assumptions of foundation, concrete response, and reservoir conditions. Comparison between responses obtained based on conventional assumptions with the results of the presented comprehensive model indicates the significance of considering radiation damping and employing a rigorous constitutive material model, which is pursued for the presented model.

关键词: soil–structure interaction     massed foundation     radiation damping     anisotropic damage    

Concepts and implementation of strain-based criteria in design codes for steel structures

Reidar BJORHOVDE

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 210-216 doi: 10.1007/s11709-012-0165-7

摘要: A uniaxial tension test is commonly used to determine the mechanical properties of steel, but it has no meaning for the response of the material in a structure. The test was developed as a consensus solution by producers, fabricators, designers and code writers, to have a standard by which similar materials could be compared to a common base. It does not represent the actual behavior of the steel in a structure, and was never intended to do so. To study the true behavior of the structure and how the material responds it would be better to determine the strains and deformations that will take place during actual service condition. Such characteristics reflect the real behavior, whether in the elastic or inelastic range. If stresses or forces are needed, these are easily determined by the value of the strain and the relevant material modulus, along with the type of cross section, whether elastic or inelastic. The paper addresses the properties of a range of structural steels, how these are incorporated into design standards and how the standards define deformation characteristics and demands for bolted and welded connections.

关键词: steel     stress-strain characteristics     tension test     strain design     actual behavior     improved design codes    

Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high

Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1135-2

摘要:

Effect of nitrogen on mixed culture PHA production was reconsidered.

Enrichment history of PHA accumulating culture was discussed.

Higher PHA content and biomass growth were achieved in presence of nitrogen.

Enrichment strategy toward higher PHA accumulation was investigated.

Microbial community succession in PHA accumulation phase was investigated.

关键词: Polyhydroxyalkanoate (PHA)     Organic loading rate     Nitrogen content     Biomass growth     Enrichment history    

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 419-428 doi: 10.1007/s11465-011-0246-7

摘要:

This paper presents the results of experimental studies carried out to conduct a comprehensive investigation on the influence of ultrasonic vibration of workpiece on the characteristics of Electrical Discharge Machining (EDM) process of FW4 Welding Metal in comparison with the conventional EDM process. The studied process characteristics included the material removal rate (MRR), tool wear ratio (TWR), and surface roughness (Ra and Rmax) of the workpiece after the EDM and ultrasonic assisted EDM (US-EDM) processes. The experiments performed under the designed full factorial procedure and the considered EDM input parameters included pulse on-time and pulse current. The experimental results show that in short pulse on-times, material removal rate in the US-EDM process is approximately quadruple than that of the EDM process. On the contrary, in the long pulse on-times, ultrasonic vibration of work??piece leads to the reduction in the MRR. On the other hand, in short pulse on-times, the TWR in the US-EDM process is lower than that of in the EDM process, and this condition reverses with increase in the pulse on-time. Furthermore, the surface roughness of the workpiece machined by EDM process is slightly lower than that of applied to the US-EDM process.

关键词: electrical discharge machining (EDM)     material removal rate (MRR)     tool wear ratio (TWR)     surface roughness    

Full-field dynamic strain reconstruction of an aero-engine blade from limited displacement responses

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0731-1

摘要: Blade strain distribution and its change with time are crucial for reliability analysis and residual life evaluation in blade vibration tests. Traditional strain measurements are achieved by strain gauges (SGs) in a contact manner at discrete positions on the blades. This study proposes a method of full-field and real-time strain reconstruction of an aero-engine blade based on limited displacement responses. Limited optical measured displacement responses are utilized to reconstruct the full-field strain. The full-field strain distribution is in-time visualized. A displacement-to-strain transformation matrix is derived on the basis of the blade mode shapes in the modal coordinate. The proposed method is validated on an aero-engine blade in numerical and experimental cases. Three discrete vibrational displacement responses measured by laser triangulation sensors are used to reconstruct the full-field strain over the whole operating time. The reconstructed strain responses are compared with the results measured by SGs and numerical simulation. The high consistency between the reconstructed and measured results demonstrates the accurate strain reconstructed by the method. This paper provides a low-cost, real-time, and visualized measurement of blade full-field dynamic strain using displacement response, where the traditional SGs would fail.

关键词: aero-engine blade     displacement response     dynamic strain reconstruction     mode shape     strain gauge    

Strain and process engineering toward continuous industrial fermentation

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1336-1353 doi: 10.1007/s11705-022-2284-6

摘要: Most current biotechnology industries are based on batch or fed-batch fermentation processes, which often show low productivity and high production costs compared to chemical processes. To increase the economic competitiveness of biological processes, continuous fermentation technologies are being developed that offer significant advantages in comparison with batch/fed-batch fermentation processes, including: (1) removal of potential substrates and product inhibition, (2) prolonging the microbial exponential growth phase and enhancing productivity, and (3) avoiding repeated fermentation preparation and lowering operation and installation costs. However, several key challenges should be addressed for the industrial application of continuous fermentation processes, including (1) contamination of the fermentation system, (2) degeneration of strains, and (3) relatively low product titer. In this study, we reviewed and discussed metabolic engineering and synthetic biology strategies to address these issues.

关键词: continuous fermentation     productivity     contamination     strain degeneration     metabolic engineering    

标题 作者 时间 类型 操作

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文

An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques

Mohammad HANIFEHZADEH, Bora GENCTURK

期刊论文

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties

Jun WU,Xuemei LIU

期刊论文

Behavior of steel fiber–reinforced high-strength concrete at medium strain rate

Chujie JIAO, Wei SUN, Shi HUAN, Guoping JIANG

期刊论文

Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation

Veena Bangalore Rangappa, Vidya Shetty Kodialbail, Saidutta Malur Bharthaiyengar

期刊论文

Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory

Amir ALLAHBAKHSHI,Masih ALLAHBAKHSHI

期刊论文

The effect of carbon nanotubes and polypropylene fibers on bond of reinforcing bars in strain resilient

Souzana P. TASTANI,Maria S. KONSTA-GDOUTOS,Stavroula J. PANTAZOPOULOU,Victor BALOPOULOS

期刊论文

Effect of fine solid particles on absorption rate of gaseous CO

LU Sumin, MA Youguang, SHEN Shuhua, ZHU Chunying

期刊论文

Reevaluation of the effect of Dianxianning on seizure rate of refractory epilepsy as additive treatment

Liyun He, Tiancai Wen, Shiyan Yan, Runjin Li, Zufa Liu, Hui Ren, Jinmin Liu, Fengshan Zhang, Jianzhong Wu, Jian Liu

期刊论文

Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete

Alireza DANESHYAR, Hamid MOHAMMADNEZHAD, Mohsen GHAEMIAN

期刊论文

Concepts and implementation of strain-based criteria in design codes for steel structures

Reidar BJORHOVDE

期刊论文

Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high

Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang

期刊论文

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

期刊论文

Full-field dynamic strain reconstruction of an aero-engine blade from limited displacement responses

期刊论文

Strain and process engineering toward continuous industrial fermentation

期刊论文